Convergence Results on Proximal Method of Multipliers in Nonconvex Programming

نویسنده

  • Abdelouahed Hamdi
چکیده

We describe a primal-dual application of the proximal point algorithm to nonconvex minimization problems. Motivated by the work of Spingarn and more recently by the work of Kaplan and Tichatschke about the proximal point methodology in nonconvex optimization. This paper discusses some local results in two directions. The first one concerns the application of the proximal method of multipliers to a general nonconvex problem under second order optimality conditions. Secondly we show that without the second order statements, local convergence is obtained for a particular class of nonconvex programs. keywords: Augmented Lagrangian, nonconvex programming, proximal regularization. AMS subject classification: 65K05, 90C30.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence rate bounds for a proximal ADMM with over-relaxation stepsize parameter for solving nonconvex linearly constrained problems

This paper establishes convergence rate bounds for a variant of the proximal alternating direction method of multipliers (ADMM) for solving nonconvex linearly constrained optimization problems. The variant of the proximal ADMM allows the inclusion of an over-relaxation stepsize parameter belonging to the interval (0, 2). To the best of our knowledge, all related papers in the literature only co...

متن کامل

Linearized Alternating Direction Method of Multipliers for Constrained Nonconvex Regularized Optimization

In this paper, we consider a wide class of constrained nonconvex regularized minimization problems, where the constraints are linearly constraints. It was reported in the literature that nonconvex regularization usually yields a solution with more desirable sparse structural properties beyond convex ones. However, it is not easy to obtain the proximal mapping associated with nonconvex regulariz...

متن کامل

Global Convergence of Splitting Methods for Nonconvex Composite Optimization

We consider the problem of minimizing the sum of a smooth function h with a bounded Hessian, and a nonsmooth function. We assume that the latter function is a composition of a proper closed function P and a surjective linear map M, with the proximal mappings of τP , τ > 0, simple to compute. This problem is nonconvex in general and encompasses many important applications in engineering and mach...

متن کامل

Block-Simultaneous Direction Method of Multipliers: A proximal primal-dual splitting algorithm for nonconvex problems with multiple constraints

We introduce a generalization of the linearized Alternating Direction Method of Multipliers to optimize a real-valued function f of multiple arguments with potentially multiple constraints g◦ on each of them. The function f may be nonconvex as long as it is convex in every argument, while the constraints g◦ need to be convex but not smooth. If f is smooth, the proposed Block-Simultaneous Direct...

متن کامل

Accelerated Proximal Gradient Methods for Nonconvex Programming

Nonconvex and nonsmooth problems have recently received considerable attention in signal/image processing, statistics and machine learning. However, solving the nonconvex and nonsmooth optimization problems remains a big challenge. Accelerated proximal gradient (APG) is an excellent method for convex programming. However, it is still unknown whether the usual APG can ensure the convergence to a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Universität Trier, Mathematik/Informatik, Forschungsbericht

دوره 98-26  شماره 

صفحات  -

تاریخ انتشار 1998